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Copyright	and	Acknowledgement
• Lots	of	the	slides	were	adapted	from	lectures	notes	of	the	two	textbooks	with	copyright	of	publisher	or	the	

original	authors	including		Elsevier	Inc,	Morgan	Kaufmann,	David	A.	Patterson	and	John	L.	Hennessy.	
• Some	slides	were	adapted	from	the	following	courses:	

– UC	Berkeley	course	“Computer	Science	252:	Graduate	Computer	Architecture”	of	David	E.	Culler	Copyright	2005	
UCB
• http://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

– Great	Ideas	in	Computer	Architecture	(Machine	Structures)	by	Randy	Katz	and	Bernhard	Boser
• http://inst.eecs.berkeley.edu/~cs61c/fa16/

• I	also	refer	to	the	following	courses	and	lecture	notes	when	preparing	materials	for	this	course
– Computer	Science	152:	Computer	Architecture	and	Engineering,	Spring	2016	by	Dr.	George	Michelogiannakis from	

UC	Berkeley
• http://www-inst.eecs.berkeley.edu/~cs152/sp16/

– Computer	Science	252:	Graduate	Computer	Architecture,	Fall	2015	by	Prof.	Krste Asanović from	UC	Berkeley
• http://www-inst.eecs.berkeley.edu/~cs252/fa15/

– Computer	Science	S	250:	VLSI	Systems	Design,	Spring	2016	by	Prof.	John	Wawrzynek from	UC	Berkeley
• http://www-inst.eecs.berkeley.edu/~cs250/sp16/

– Computer	System	Architecture,	Fall	2005	by	Dr.	Joel	Emer and	Prof.	Arvind from	MIT
• http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-

fall-2005/
– Synthesis	Lectures	on	Computer	Architecture

• http://www.morganclaypool.com/toc/cac/1/1

• The	uses	of	the	materials	(source	code,	slides,	documents	and	videos)	of	this	course	
are	for	educational	purposes	only	and	should	be	used	only	in	conjunction	with	the	
textbook.	Derivatives	of	the	materials	must	acknowledge	the	copyright	notices	of	
this	and	the	originals.	Permission	for	commercial	purposes	should	be	obtained	from	
the	original	copyright	holder	and	the	successive	copyright	holders	including	myself.	2
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Generation	Of	Computers

4https://solarrenovate.com/the-evolution-of-computers/



New	School	Computer	(#1)

Personal	
Mobile	
Devices
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New	School	“Computer”	(#2)
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Classes	of	Computers

• Personal	Mobile	Device	(PMD)
– e.g.	start	phones,	tablet	computers
– Emphasis	on	energy	efficiency	and	real-time

• Desktop	Computing
– Emphasis	on	price-performance

• Servers
– Emphasis	on	availability,	scalability,	throughput

• Clusters	/	Warehouse	Scale	Computers
– Used	for	“Software	as	a	Service	(SaaS)”
– Emphasis	on	availability	and	price-performance
– Sub-class:		Supercomputers,	emphasis:		floating-point	

performance	and	fast	internal	networks
• Internet	of	Things/Embedded	Computers

– Emphasis:		price
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• “I	think	there	is	a	world	market	for	maybe	five	
computers.”

– Thomas	Watson,	chairman	of	IBM,	1943.

• “There	is	no	reason	for	any	individual	to	have	a	
computer	in	their	home”

– Ken	Olson,	president	and	founder	of	Digital	Equipment	
Corporation,	1977.

• “640K	[of	memory]	ought	to	be	enough	for	anybody.”
– Bill	Gates,	chairman	of	Microsoft,1981.

Notes	by	the	Pioneers	



Components	of	a	Computer

• Same	components	for
all	kinds	of	computer
– Desktop,	server,

embedded
• Two	core	parts

– Processor	and	memory
• Input/output	includes

– User-interface	devices
• Display,	keyboard,	mouse

– Storage	devices
• Hard	disk,	CD/DVD,	flash

– Network	adapters
• For	communicating	with	other	
computers



Inside	the	Processor	(CPU)

• Functional	units:	performs	computations
• Datapath:	wires	for	moving	data
• Control	logic:	sequences	datapath,	memory,	and	operations
• Cache	memory

– Small	fast	SRAM	memory	for	immediate	access	to	data

Apple A5
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A	Safe	Place	for	Data

• Volatile	main	memory
– Loses	instructions	and	data	when	power	off

• Non-volatile	secondary	memory
– Magnetic	disk
– Flash	memory
– Optical	disk	(CDROM,	DVD)
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• Computer	architectures	and	great	ideas	in	
computer	architectures

• Performance
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What	is	“Computer	Architecture”?
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Applications

Instruction	Set
Architecture

Compiler

Operating
System

Firmware

I/O	systemInstr.	Set	Proc.

Digital	Design
Circuit	Design

Datapath &	Control	

Layout	&	fab
Semiconductor	Materials

software

hardware



14

The	Instruction	Set:	a	Critical	Interface

instruction	set

software

hardware

• Properties	of	a	good	abstraction
– Lasts	through	many	generations	(portability)
– Used	in	many	different	ways	(generality)
– Provides	convenient		functionality	to	higher	levels
– Permits	an	efficient	implementation	at	lower	levels
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Elements	of	an	ISA

• Set	of	machine-recognized	data	types
– bytes,	words,	integers,	floating	point,	strings,	.	.	.

• Operations	performed	on	those	data	types
– Add,	sub,	mul,	div,	xor,	move,	….

• Programmable	storage
– regs,	PC,	memory

• Methods	of	identifying	and	obtaining	data	referenced	by	
instructions	(addressing	modes)
– Literal,	reg.,	absolute,	relative,	reg +	offset,	…

• Format	(encoding)	of	the	instructions
– Op	code,	operand	fields,	…



Computer	Architecture
How	things	are	put	together	in	design	and	implementation

• Capabilities	&	Performance	Characteristics	of	Principal	
Functional	Units

–(e.g.,	Registers,	ALU,	Shifters,	Logic	Units,	...)
•Ways	in	which	these	components	are	interconnected
• Information	flows	between	components
• Logic	and	means	by	which	such	information	flow	is	
controlled.

• Choreography	of	FUs	to	realize	the	ISA
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Great Ideas in Computer Architectures

1. Design for Moore’s Law

2. Use abstraction to simplify design

3. Make the common case fast

4. Performance via parallelism

5. Performance via pipelining

6. Performance via prediction

7. Hierarchy of memories

8. Dependability via redundancy
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Great	Idea:	“Moore’s	Law”

Gordon	Moore,	Founder	of	Intel
• 1965:	since	the	integrated	circuit	was	invented,	the	number	of	

transistors/inch2 in	these	circuits	roughly	doubled	every	year;	
this	trend	would	continue	for	the	foreseeable	future

• 1975:	revised	- circuit	complexity	doubles	every	two	years

18
Image	credit:	Intel



Moore’s	Law	trends
• More	transistors	=	↑	opportunities	for	exploiting	parallelism	in	the	

instruction	level	(ILP)
– Pipeline,	superscalar,	VLIW	(Very	Long	Instruction	Word),	SIMD	(Single	

Instruction	Multiple	Data)	or	vector,	speculation,	branch	prediction
• General	path	of	scaling

– Wider	instruction	issue,	longer	piepline
– More	speculation
– More	and	larger	registers	and	cache

• Increasing	circuit	density	~=	increasing	frequency	~=	increasing	
performance

• Transparent	to	users
– An	easy	job	of	getting	better	performance:	buying	faster	processors	(higher	

frequency)

• We	have	enjoyed	this	free	lunch	for	several	decades,	however	(TBC)	
…
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Great	Idea:	Pipeline
Fundamental	Execution	Cycle
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Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain	instruction	from	
program	storage

Determine	required	
actions	and	instruction	
size

Locate	and	obtain	
operand	data

Compute	result	value	or	
status

Deposit	results	in	storage	
for	later	use

Determine	successor	
instruction

Processor

regs

F.U.s

Memory

program

Data

von	Neuman
bottleneck



Pipelined	Instruction	Execution
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Great	Idea:	Abstraction
(Levels	of	Representation/Interpretation)

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions
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The	Memory	Abstraction

• Association	of	<name,	value>	pairs
– typically	named	as	byte	addresses
– often	values	aligned	on	multiples	of	size

• Sequence	of	Reads	and	Writes
• Write	binds	a	value	to	an	address

– Left	value	
• Read	of	addr returns	most	recently	written	value	bound	to	
that	address
– Right	value

23

address (name)
command (R/W)

data (W)

data (R)

done

int a	=	b;



Great	idea:	Memory	Hierarchy
Levels	of	the	Memory	Hierarchy
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CPU Registers
100s Bytes
<< 1s ns

Cache
10s-100s K Bytes
~1 ns
$1s/ MByte

Main Memory
M Bytes
100ns- 300ns
$< 1/ MByte

Disk
10s G Bytes, 10 ms 
(10,000,000 ns)
$0.001/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger



Processor-DRAM	Memory	Gap	(latency)
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Jim	Gray’s	Storage	Latency	Analogy:		
How	Far	Away	is	the	Data?
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Registers
On Chip Cache
On Board  Cache

Main Memory 

Disk

1
2
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100

Tape /Optical 
Robot
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This Room

My Head
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2,000 Years
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Jim	Gray
Turing	Award
B.S.	Cal	1966
Ph.D.	Cal	1969!



The	Principle	of	Locality

• The	Principle	of	Locality:
– Program	access	a	relatively	small	portion	of	the	address	space	

at	any	instant	of	time.
• Two	Different	Types	of	Locality:

– Temporal	Locality	(Locality	in	Time):	If	an	item	is	referenced,	it	
will	tend	to	be	referenced	again	soon	(e.g.,	loops,	reuse)

– Spatial	Locality	(Locality	in	Space):	If	an	item	is	referenced,	
closeby items	tend	to	be	referenced	soon	
(e.g.,	straightline code,	array	access)

• Last	30	years,	HW		relied	on	locality	for	speed

27
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Great	Idea:	Parallelism
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Parallelism

• Classes	of	parallelism	in	applications:
– Data-Level	Parallelism	(DLP)
– Task-Level	Parallelism	(TLP)

• Classes	of	architectural	parallelism:
– Instruction-Level	Parallelism	(ILP)
– Vector	architectures/Graphic	Processor	Units	(GPUs)
– Thread-Level	Parallelism
– Heterogeneity
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Computer	Architecture	Topics
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Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering, 
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2/L3 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction 
Level Parallelism

Network
Communication
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Why	is	Architecture	Exciting	Today?
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CPU	Speed	Flat



Single	Processor	Performance

RISC

Move to multi-processor
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Problems	of	Traditional	ILP	Scaling

• Fundamental	circuit	limitations1
– delays	⇑ as	issue	queues	⇑ and	multi-port	register	files	⇑
– increasing	delays	limit	performance	returns	from	wider	issue

• Limited	amount	of	instruction-level	parallelism1

– inefficient	for	codes	with	difficult-to-predict	branches

• Power	and	heat	stall	clock	frequencies

33

[1]	The	case	for	a	single-chip	multiprocessor,	K.	Olukotun,	B.	Nayfeh,	L.	
Hammond,	K.	Wilson,	and	K.	Chang,	ASPLOS-VII,	1996.



ILP	impacts
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Simulations	of	8-issue	Superscalar
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Power/Heat	Density	Limits	Frequency
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• Some	fundamental	physical	limits	are	being	reached



Recent	Multicore	Processors

37



Recent	Manycore GPU	processors
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An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64�bit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

� The�new�SMX�processor�architecture�
� An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

� Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110)s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we)ve�built,�but�also�the�most�programmable�and�power�efficient.��

�

SMX:�192�single�precision�CUDA�cores,�64�double�precision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

�
�

Kepler�Memory�Subsystem�/�L1,�L2,�ECC�

Kepler&s�memory�hierarchy�is�organized�similarly�to�Fermi.�The�Kepler�architecture�supports�a�unified�
memory�request�path�for�loads�and�stores,�with�an�L1�cache�per�SMX�multiprocessor.�Kepler�GK110�also�
enables�compiler�directed�use�of�an�additional�new�cache�for�read�only�data,�as�described�below.�

�

�

64�KB�Configurable�Shared�Memory�and�L1�Cache�

In�the�Kepler�GK110�architecture,�as�in�the�previous�generation�Fermi�architecture,�each�SMX�has�64�KB�
of�on�chip�memory�that�can�be�configured�as�48�KB�of�Shared�memory�with�16�KB�of�L1�cache,�or�as�16�
KB�of�shared�memory�with�48�KB�of�L1�cache.�Kepler�now�allows�for�additional�flexibility�in�configuring�
the�allocation�of�shared�memory�and�L1�cache�by�permitting�a�32KB�/�32KB�split�between�shared�
memory�and�L1�cache.�To�support�the�increased�throughput�of�each�SMX�unit,�the�shared�memory�
bandwidth�for�64b�and�larger�load�operations�is�also�doubled�compared�to�the�Fermi�SM,�to�256B�per�
core�clock.�

48KB�Read�Only�Data�Cache�

In�addition�to�the�L1�cache,�Kepler�introduces�a�48KB�cache�for�data�that�is�known�to�be�read�only�for�
the�duration�of�the�function.�In�the�Fermi�generation,�this�cache�was�accessible�only�by�the�Texture�unit.�
Expert�programmers�often�found�it�advantageous�to�load�data�through�this�path�explicitly�by�mapping�
their�data�as�textures,�but�this�approach�had�many�limitations.��

• ~5k	cores



Current	Trends	in	Architecture
• Leveraging	Instruction-Level	parallelism	(ILP)	is	near	an	end

– Single	processor	performance	improvement	ended	in	2003
• New	models	for	performance:

– Data-level	parallelism	(DLP)
– Thread-level	parallelism	(TLP)

• Exciting	topics	and	challenges
– Heterogeneity	
– Domain	specific	architectures
– Software	and	hardware	co-design
– Agile	development

• DARPA	Picks	Its	First	Set	of	Winners	in	Electronics	Resurgence	
Initiative,	July	2018

• https://spectrum.ieee.org/tech-
talk/semiconductors/design/darpa-picks-its-first-set-of-winners-in-
electronics-resurgence-initiative.amp.html
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• Video:	https://www.acm.org/hennessy-patterson-turing-lecture
• Short	summary

– https://www.hpcwire.com/2018/04/17/hennessy-patterson-a-new-
golden-age-for-computer-architecture/
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Exercise:	Inspect	ISA	for	sum
• Sum	example

– https://passlab.github.io/CSCE513/exercises/sum

• Check	
– sum_full.s,	
– sum_riscv.s
– sum_x86.s

• Generate	and	execute
– gcc -save-temps	sum.c –o	sum
– ./sum	102400

• For	how	to	compile	and	run	Linux	program
– https://passlab.github.io/CSCE513/notes/lecture01_LinuxCProgramming.pdf

• Other	system	commands:
– cat	/proc/cpuinfo to	show	the	CPU	and	#cores
– top	command	to	show	system	usage	and	memory
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Machine	for	Development	and	Experiment

• Linux	machines	in	Swearingen	1D43	and	3D22
– All	CSCE	students	by	default	have	access	to	these	machine	

using	their	standard	login	credentials
• Let	me	know	if	you,	CSCE	or	not,	cannot	access	

– Remote	access	is	also	available	via	SSH	over	port	
222. Naming	schema	is	as	follows:
• l-1d43-01.cse.sc.edu	through	l-1d43-26.cse.sc.edu
• l-3d22-01.cse.sc.edu	through	l-3d22-20.cse.sc.edu

• Restricted	to	2GB	of	data	in	their	home	folder	(~/).
– For	more	space,	create	a	directory	in	/scratch	on	the	login	

machine,	however	that	data	is	not	shared	and	it	will	only	be	
available	on	that	specific	machine.
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Putty	SSH	Connection	on	Windows

43

l-1d43-08.cse.sc.edu 222



SSH	Connection	from	Linux/Mac	OS	X	Terminal
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-X	for	enabling	X-
windows	forwarding	so	
you	can	use	the	graphics	
display	on	your	computer.	
For	Mac	OS	X,	you	need	
have	X	server	software	
installed,	e.g.	
Xquartz(https://www.xqu
artz.org/)	is	the	one	I	use.	


