CSCE 513: Computer Architecture, Fall 2018

Assignment #3, due-10/29/2018, Monday 11:55PM
Due 10/31/2018, Wednesday 11:55PM

Covered Topics: 1) Locality and Performance, 2) Cache Optimization 2)
Instruction Level Parallelism (ILP)

Total Points: 100+25 (bonus) points for undergraduates, and 110+15 (bonus) for
graduates.

Submission:

1. Only electronic submissions on dropbox are accepted.

2. You should submit two files, the mm.c source code file, and a SINGLE PDF
file that includes everything else.

3. Number your solutions in the same way and in the same order as the
questions are numbered in this document and do NOT include the
questions as part of your submission.

4. Include your full name in the PDF file.

5. Scanned copy of handwritten answers will NOT be graded.

1) Locality and Performance (Total 40 points, 10 bonus points will be given to

undergraduate if function 7 and 8 are implemented).

In this assignment, you will implement different versions of matrix multiplication and evaluate
their performance and cache miss rate. The purpose is to study the locality problem of
programming, its impact to memory performance and application performance, and how to
optimize it. The skeleton code is given in https://passlab.github.io/CSCE513 /Assignment 3 /mm.c.

Implementation:

Your implementation should be based on the materials in

https://passlab.github.io/CSCE513 /notes/lecture10 LocalityMM.pdf and implement the following
functions as it listed in the mm.c file.

void mm_ijk(int N, REAL * A, REAL * B, REAL *C
void mm_jik(int N, REAL * A, REAL * B, REAL *C
void mm_kij(int N, REAL * A, REAL * B, REAL *C
void mm_ikj(int N, REAL * A, REAL * B, REAL *C
(
(

)
);
);
).
)
)

void mm_jki(int N, REAL * A, REAL * B, REAL *C);
void mm_kji(int N, REAL * A, REAL * B, REAL *C);
void mm_ijk_blocking(int N, REAL * A, REAL * B, REAL * C, int bsize);

void mm_cb(int N, REAL * A, REAL * B, REAL * C, int bsize); /* cache oblivious algorithm */

NG~ LON =

You need to login to one of the machine using ssh/putty. Check
https://passlab.github.io/CSCE513 /resources/devmachine.html for details. And then download
the mm.c to your folder using wget, edit to add your code that has your implementation and codes
for collecting data and printing out data (see below), compile and run the code. | recommend you
implement one function first and make it working and then move on to implement others.

—-bash-4.1$ wget https://passlab.github.io/CSCE513/Assignment 3/mm.c
-bash-4.1$%$ vim mm.c

—-bash-4.1$%$ vi mm.c

—-bash-4.1%$ gcc -00 mm.c -0 mm -lpapi

Data collection:

To collect performance data and L1 and L2 cache miss info, insert code in the main function. For
example, for mm_ijk method, insert the following code to collect the execution time and L1/L2/L3
misses.

* for mm_ijk */

__builtin____clear_cache(A, A+N*N); /* flush cache so we have cold start */
__builtin___clear_cache(B, B+N*N);

__builtin___clear_cache(C, C+N*N);

long long PAPI_Values_ijkfNUM_PAPI_EVENTS];

elapsed_ijk = read_timer();

PAPI|_reset(PAPI_EventSet);

mm_ijk(N, A, B, C);

PAPI_read(PAPI_EventSet, PAPI_Values_ijk);

elapsed_ijk = (read_timer() - elapsed_ijk);

The following code is inserted for printing out the information at the end:

printf("mm_ijk:\0\t\t% 4Rt % 4R\ %. 2\0\t%. 2A1\t%.2An", elapsed_ijk * 1.0e3, ((((2.0 * N) * N) * N) /
(1.0e6 * elapsed_ijk)), (double)PAPI_Values_ijk[1]/(double)PAPI_Values_ijk[0],
(double)PAPI_Values_ijk[2)/(double)PAPI_Values_ijk[1],
(double)PAPI_Values_ijk[3])/(double)PAPI_Values_ijk[2]):

You will need to insert similar codes for each of the methods you implement and evaluate. The
following screen shot shows what it would look like after you finish your implementation, and
compile and execute the code. The reason to use -O0 optimization flag is to turn off compiler
optimizations so we only evaluate what we intend to. Ignore L3 cache miss rate as they do not
look right.

[yanyh@fornax ~]$ vim mm.c

[yanyh@fornax ~]$ gcc -00 mm.c -o mm -lpapi
[yanyh@fornax ~1$./mm

Usage: mm <N> <bsize>, default N: 512, bsize: 32

Matrix Multiplication: A[512][512] % B[512]1[512] = C[512]1[512], bsize: 32

Performance: Runtime(ms) MFLOPS L1_DMissRate L2_DMissRate L3_DMissRate

mm_ijk: 1154.999971 232.411656 0.06 1.00 1660.99
mm_jik: 1147.000074 234.032640 0.07 1.00 882595128.03
mm_kij: 648.999929 413.613999 0.00 0.06 11429.86
mm_ikj: 644.000053 416.825208 0.00 0.05 550662.64
mm_jki: 1611.999989 166.523237 0.10 1.00 0.00

mm_kji: 1611.999989 166.523237 0.10 1.00 0.00
mm_ijk_blocking: 638.999939 420.086826 0.06 0.01 306323.79
mm_cb: 663.000107 404.879959 0.06 0.01 192263419.84

[yanyh@fornax ~1$./mm 256 64

Matrix Multiplication: A[512][512] % B[512]1[512] = C[512]1[512], bsize: 64

Performance: Runtime(ms) MFLOPS L1_DMissRate L2_DMissRate L3_DMissRate

mm_ijk: 1062.999964 252.526308 0.06 1.00 1661.00
mm_jik: 1055.000067 254.441174 0.07 1.00 882575280.55
mm_kij: 648.000002 414.252246 0.00 0.06 11441.63
mm_ikj: 643.999815 416.825362 0.00 0.05 532486.13
mm_jki: 1497.000217 179.315576 0.10 1.00 0.00

mm_kji: 1496.999979 179.315604 0.10 1.00 0.00
mm_ijk_blocking: 651.999950 411.710853 0.06 0.00 1057971.40
mm_cb: 657.999992 407.956625 0.06 0.00 693895490.54

Data analysis and evaluation

When you have your implementation finished, run your program with different matrix size and
block size, and collect the performance data and L1/L2 miss rate. Data collected should be
input to the Excel file provided and the file will automatically generate plot figure for you to
analyze.

Submission

Undergraduates who include implementation and evaluation of function 7 and 8 receive
bonus 10 points.

Your submission should include:

1). mm.c file that contains your implementation.

2). A report that contains the two figures generated from the Excel file, and your analysis and
discussion about the performance different between the 8 methods. Back up your performance
discussion by referring to the cache miss rate data and how the change of loop order and blocking
techniques can help improve cache hit ratio. Limit your discussion to less than half-page.

2) Cache Optimization (Total 25 points)
CAQA Textbook Appendix B and Chapter 2:
B.1 aand b (10 points)

2.1 a,b and c (15 points)

3) Instruction Level Parallelism (ILP) (Total 60 points, 15 of which are bonus)
CAQA Textbook chapter 3

3.14 (30 points, each 10 points for a, b, and c)

3.15 a (15 points), b (15 points bonus for both graduate and undergraduate)

If you need, questions for 2) and 3) are copied from the textbook in the
following:

B-60

Appendix B Review of Memory Hierarchy

B.1

Exercises by Amr Zaky

[10/10/10/15] <B.1> You are trying to appreciate how important the principle of
locality is in justifying the use of a cache memory, so you experiment with a com-
puter having an L1 data cache and a main memory (you exclusively focus on data
accesses). The latencies (in CPU cycles) of the different kinds of accesses are as
follows: cache hit, 1 cycle; cache miss, 110 cycles; main memory access with cache
disabled, 105 cycles.

a. [10] <B.1> When you run a program with an overall miss rate of 3%, what
will the average memory access time (in CPU cycles) be?

b. [10] <B.1> Next, you run a program specifically designed to produce
completely random data addresses with no locality. Toward that end, you use an
array of size 1 GB (all of which fits in the main memory). Accesses to random
elements of this array are continuously made (using a uniform random number
generator to generate the elements indices). If your data cache size is 64 KB,
what will the average memory access time be?

2.1

Case Studies and Exercises 149

The transpose of a matrix interchanges its rows and columns; this concept is
illustrated here:

‘a11 a12 a13 a14| [a11 aAa21 a3l a4l
A21 A22 A23 A4 Al2 A22 A32 A42
A31 a32 A33 a34| |al3 A23 A33 Ad3

(A4l 42 A43 A44| [Al4 A24 A34 A4

Here is a simple C loop to show the transpose:
for (i=0; 1 <3; i++) {

for (j=0;J<3; j++) {
outputljILil=1inputlillj];

}
}

Assume that both the input and output matrices are stored in the row major order
(row major order means that the row index changes fastest). Assume that you are
executing a 256-256 double-precision transpose on a processor with a 16 KB fully
associative (don’t worry about cache conflicts) least recently used (LRU) replace-
ment L1 data cache with 64-byte blocks. Assume that the L1 cache misses or pre-
fetches require 16 cycles and always hit in the L2 cache, and that the L2 cache can
process a request every 2 processor cycles. Assume that each iteration of the pre-
ceding inner loop requires 4 cycles if the data are present in the L1 cache. Assume
that the cache has a write-allocate fetch-on-write policy for write misses. Unreal-
istically, assume that writing back dirty cache blocks requires O cycles.

[10/15/15/12/20] <2.3> For the preceding simple implementation, this execution
order would be nonideal for the input matrix; however, applying a loop interchange
optimization would create a nonideal order for the output matrix. Because loop
interchange is not sufficient to improve its performance, it must be blocked instead.

a. [10] <2.3> What should be the minimum size of the cache to take advantage of
blocked execution?

b. [15] <2.3> How do the relative number of misses in the blocked and
unblocked versions compare in the preceding minimum-sized cache?

¢. [15] <2.3> Write code to perform a transpose with a block size parameter B
that uses B- B blocks.

3.14

[25/25/25] <3.2, 3.7> In this exercise, we look at how software techniques can
extract instruction-level parallelism (ILP) in a common vector loop. The following
loop is the so-called DAXPY loop (double-precision aX plus Y) and is the central
operation in Gaussian elimination. The following code implements the DAXPY
operation, Y=aX + Y, for a vector length 100. Initially, R1 is set to the base address
of array X and R2 is set to the base address of Y:

addi x4,x1,#800 ; x1 = upper bound for X

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell

foo: fld F2,0(x1) ; (F2)=X(1)
fmul.d F4,F2,F0 ; (F4) =a*X(i)
fld F6,0(x2) ; (F6)=Y(i)
fadd.d F6,F4,F6 ; (F6) =a*X(i)+Y(i)
fsd F6,0(x2) ;Y(i)=a*X(i)+Y(i)
addi x1,x1,#8 ; increment X index
addi x2,x2,#8 ;increment Y index
sltu x3,x1,x4 ; test: continue loop?
bnez x3,foo ; Toop if needed

275

Assume the functional unit latencies as shown in the following table. Assume a
one-cycle delayed branch that resolves in the ID stage. Assume that results are fully

bypassed.

Instruction producing result Instruction using result Latency in clock cycles
FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 4

Integer operations and all loads Any 2

a. [25] <3.2> Assume a single-issue pipeline. Show how the loop would look
both unscheduled by the compiler and after compiler scheduling for both
floating-point operation and branch delays, including any stalls or idle clock
cycles. What is the execution time (in cycles) per element of the result vector,
Y, unscheduled and scheduled? How much faster must the clock be for proces-
sor hardware alone to match the performance improvement achieved by the
scheduling compiler? (Neglect any possible effects of increased clock speed

on memory system performance.)

b. [25] <3.2> Assume a single-issue pipeline. Unroll the loop as many times as
necessary to schedule it without any stalls, collapsing the loop overhead instruc-
tions. How many times must the loop be unrolled? Show the instruction sched-

ule. What is the execution time per element of the result?

c. [25] <3.7> Assume a VLIW processor with instructions that contain five
operations, as shown in Figure 3.20. We will compare two degrees of loop
unrolling. First, unroll the loop 6 times to extract ILP and schedule it without
any stalls (i.e., completely empty issue cycles), collapsing the loop overhead
instructions, and then repeat the process but unroll the loop 10 times. Ignore
the branch delay slot. Show the two schedules. What is the execution time per
element of the result vector for each schedule? What percent of the operation
slots are used in each schedule? How much does the size of the code differ
between the two schedules? What is the total register demand for the two

schedules?

276 Chapter Three Instruction-Level Parallelism and Its Exploitation

3.15

[20/20] <3.4, 3.5, 3.7, 3.8> In this exercise, we will look at how variations on
Tomasulo’s algorithm perform when running the loop from Exercise 3.14. The
functional units (FUs) are described in the following table.

FU type Cycles in EX Number of FUs Number of reservation stations
Integer 1 1 5
FP adder 10 1 3
FP multiplier 15 1 2

Assume the following:

m Functional units are not pipelined.

m There is no forwarding between functional units; results are communicated by

the common data bus (CDB).

m The execution stage (EX) does both the effective address calculation and the

memory access for loads and stores. Thus, the pipeline is IF/ID/IS/EX/WB.

Loads require one clock cycle.

The issue (IS) and write-back (WB) result stages each require one clock cycle.

There are five load buffer slots and five store buffer slots.

Assume that the Branch on Not Equal to Zero (BNEZ) instruction requires one

clock cycle.

a. [20] <3.4-3.5> For this problem use the single-issue Tomasulo MIPS pipeline
of Figure 3.10 with the pipeline latencies from the preceding table. Show the
number of stall cycles for each instruction and what clock cycle each instruction
begins execution (i.e., enters its first EX cycle) for three iterations of the loop.
How many cycles does each loop iteration take? Report your answer in the form
of a table with the following column headers:

Iteration (loop iteration number)

Instruction

Issues (cycle when instruction issues)

Executes (cycle when instruction executes)

Memory access (cycle when memory is accessed)

Write CDB (cycle when result is written to the CDB)

Comment (description of any event on which the instruction is waiting)

Show three iterations of the loop in your table. You may ignore the first

instruction.

b. [20] <3.7, 3.8> Repeat part (a) but this time assume a two-issue Tomasulo
algorithm and a fully pipelined floating-point unit (FPU).

