
CSCE	513:	Computer	Architecture,	Fall	2018	
Assignment	#3,	due	10/29/2018,	Monday	11:55PM		
Due	10/31/2018,	Wednesday	11:55PM	
	
Covered	Topics:	1)	Locality	and	Performance,	2)	Cache	Optimization	2)	
Instruction	Level	Parallelism	(ILP)	
	
Total	Points:	100+25	(bonus)	points	for	undergraduates,	and	110+15	(bonus)	for	
graduates.	
	
Submission:		
1. Only	electronic	submissions	on	dropbox	are	accepted.		
2. You	should	submit	two	files,	the	mm.c	source	code	file,	and	a	SINGLE	PDF	
file	that	includes	everything	else.		

3. Number	your	solutions	in	the	same	way	and	in	the	same	order	as	the	
questions	are	numbered	in	this	document	and	do	NOT	include	the	
questions	as	part	of	your	submission.		

4. Include	your	full	name	in	the	PDF	file.		
5. Scanned	copy	of	handwritten	answers	will	NOT	be	graded.		

	
1)	Locality	and	Performance	(Total	40	points,	10	bonus	points	will	be	given	to	
undergraduate	if	function	7	and	8	are	implemented).		
In	this	assignment,	you	will	implement	different	versions	of	matrix	multiplication	and	evaluate	
their	performance	and	cache	miss	rate.	The	purpose	is	to	study	the	locality	problem	of	
programming,	its	impact	to	memory	performance	and	application	performance,	and	how	to	
optimize	it.	The	skeleton	code	is	given	in	https://passlab.github.io/CSCE513/Assignment_3/mm.c.		
	
Implementation:		
Your	implementation	should	be	based	on	the	materials	in	
https://passlab.github.io/CSCE513/notes/lecture10_LocalityMM.pdf	and	implement	the	following	
functions	as	it	listed	in	the	mm.c	file.		

1. void mm_ijk(int N, REAL * A, REAL * B, REAL *C);
2. void mm_jik(int N, REAL * A, REAL * B, REAL *C);
3. void mm_kij(int N, REAL * A, REAL * B, REAL *C);
4. void mm_ikj(int N, REAL * A, REAL * B, REAL *C);
5. void mm_jki(int N, REAL * A, REAL * B, REAL *C);
6. void mm_kji(int N, REAL * A, REAL * B, REAL *C);
7. void mm_ijk_blocking(int N, REAL * A, REAL * B, REAL * C, int bsize);
8. void mm_cb(int N, REAL * A, REAL * B, REAL * C, int bsize); /* cache oblivious algorithm */

You	need	to	login	to	one	of	the	machine	using	ssh/putty.	Check	
https://passlab.github.io/CSCE513/resources/devmachine.html	for	details.	And	then	download	
the	mm.c	to	your	folder	using	wget,	edit	to	add	your	code	that	has	your	implementation	and	codes	
for	collecting	data	and	printing	out	data	(see	below),	compile	and	run	the	code.	I	recommend	you	
implement	one	function	first	and	make	it	working	and	then	move	on	to	implement	others.	

	
-bash-4.1$ wget https://passlab.github.io/CSCE513/Assignment_3/mm.c	
-bash-4.1$ vim mm.c
-bash-4.1$ vi mm.c
-bash-4.1$ gcc -O0 mm.c -o mm -lpapi	
	
Data	collection:	
To	collect	performance	data	and	L1	and	L2	cache	miss	info,	insert	code	in	the	main	function.	For	
example,	for	mm_ijk	method,	insert	the	following	code	to	collect	the	execution	time	and	L1/L2/L3	
misses.		
	
 /* for mm_ijk */
 __builtin___clear_cache(A, A+N*N); /* flush cache so we have cold start */
 __builtin___clear_cache(B, B+N*N);
 __builtin___clear_cache(C, C+N*N);
 long long PAPI_Values_ijk[NUM_PAPI_EVENTS];
 elapsed_ijk = read_timer();
 PAPI_reset(PAPI_EventSet);
 mm_ijk(N, A, B, C);
 PAPI_read(PAPI_EventSet, PAPI_Values_ijk);
 elapsed_ijk = (read_timer() - elapsed_ijk);
	
The	following	code	is	inserted	for	printing	out	the	information	at	the	end:	
	
printf("mm_ijk:\t\t\t%4f\t%4f\t\t%.2f\t\t%.2f\t\t%.2f\n", elapsed_ijk * 1.0e3, ((((2.0 * N) * N) * N) /
(1.0e6 * elapsed_ijk)), (double)PAPI_Values_ijk[1]/(double)PAPI_Values_ijk[0],
(double)PAPI_Values_ijk[2]/(double)PAPI_Values_ijk[1],
(double)PAPI_Values_ijk[3]/(double)PAPI_Values_ijk[2]);

You will need to insert similar codes for each of the methods you implement and evaluate. The
following screen shot shows what it would look like after you finish your implementation, and
compile and execute the code. The reason to use -O0 optimization flag is to turn off compiler
optimizations so we only evaluate what we intend to. Ignore L3 cache miss rate as they do not
look right.

	
Data	analysis	and	evaluation	
When you have your implementation finished, run your program with different matrix size and
block size, and collect the performance data and L1/L2 miss rate. Data collected should be
input to the Excel file provided and the file will automatically generate plot figure for you to
analyze.
	
Submission	
Undergraduates	who	include	implementation	and	evaluation	of	function	7	and	8	receive	
bonus	10	points.		
Your	submission	should	include:	
1).	mm.c	file	that	contains	your	implementation.		
2).	A	report	that	contains	the	two	figures	generated	from	the	Excel	file,	and	your	analysis	and	
discussion	about	the	performance	different	between	the	8	methods.	Back	up	your	performance	
discussion	by	referring	to	the	cache	miss	rate	data	and	how	the	change	of	loop	order	and	blocking	
techniques	can	help	improve	cache	hit	ratio.	Limit	your	discussion	to	less	than	half-page.		
	
	2)	Cache	Optimization	(Total	25	points)	
CAQA	Textbook	Appendix	B	and	Chapter	2:	
B.1	a	and	b	(10	points)	
2.1	a,	b	and	c	(15	points)	
	
3)	Instruction	Level	Parallelism	(ILP)	(Total	60	points,	15	of	which	are	bonus)	
CAQA	Textbook	chapter	3	
3.14	(30	points,	each	10	points	for	a,	b,	and	c)	
3.15	a	(15	points),	b	(15	points	bonus	for	both	graduate	and	undergraduate)	
	

If	you	need,	questions	for	2)	and	3)	are	copied	from	the	textbook	in	the	
following:		

	
	

	

	

	

