
CSCE	513	Computer	Architecture,	Fall	2018,	Assignment	#2,	due	10/08/2018,	11:55PM	
	
Covered	topics:	1)	pipeline,	hazards,	and	instruction	scheduling.	2)	pipeline	implementation.	3)	Cache	
Organization	and	Cache	Performance.	
Total	points:	100+40	(bonus)	points	for	undergraduates,	and	130+10	(bonus)	for	graduates.	
	
Problem	 1	 2	 3	 4*	 5.1	 5.2	 5.3	

Points	 40+10	 5	 5	 30*	 10	 20	 20	
• Question	1.1	has	bonus	10	points.	
• Question	4	is	required	for	graduate	students.	Undergraduates	who	solve	receive	bonus	points.		
• For	questions	1	and	4,	prepare	your	solutions	using	the	provided	Excel	sheets.	When	you	complete,	
copy	the	required	tables	and	figures	to	the	PDF	file	of	your	submission.		

	
Submission:		
1. Only	electronic	submissions	on	dropbox	are	accepted.		
2. All	your	solutions	should	be	included	in	a	SINGLE	PDF	file.		
3. Number	your	solutions	in	the	same	way	and	in	the	same	order	as	the	questions	are	numbered	in	
this	document	and	do	NOT	include	the	questions	as	part	of	your	submission.		

4. Include	your	full	name	in	the	PDF	file.		
5. Scanned	copy	of	handwritten	answers	will	NOT	be	graded.		

	
Problem	1.	(Total	40+10	points.	1:	10+10	points,	2:	20	points,	3:	10	points)	
The	following	code	is	compiled	to	RISC-V	processors	implemented	in	64-bit	5-stage	pipeline.	In	this	assignment,	you	need	to	work	
on	the	following	three	questions	and	an	Excel	file	that	contains	three	sheets	is	provided	for	you	to	do	that:		
1)	Fill	in	the	table	in	Sheet	“1.1	Information”	with	the	information	for	each	instruction	(the	encoding	column	is	bonus	for	10	
points).	Include	the	table	in	the	PDF	file	of	your	submission.		
2)	In	each	of	the	following	3	configurations,	draw	the	pipeline	execution	graph	using	Sheet	“1.2	Pipeline	and	Cycle	Counting”	to	
show	the	scheduling	of	the	instructions	in	each	cycle,	assuming	N	=	1000.	Shorten	your	drawing	as	you	see	fit	(e.g.	you	do	not	
need	to	draw	each	of	the	1000	iterations).	Include	the	table	from	the	Excel	file	in	the	PDF	file	of	your	submission.		

The	three	configurations:		
1. No	structure	hazards,	no	register	forwarding	or	any	support	for	dealing	with	hazards	of	control	transfer	instructions		
2. No	structure	hazards,	register	forwarding,	but	no	support	for	dealing	with	hazards	of	control	transfer	instructions	

3. No	structure	hazards,	register	forwarding,	improved	ID	stage	for	branch	test	and	computing	new	PC	(stall	cycles	reduced	
from	3	to	1).		

3)	In	each	of	the	3	configurations,	count	the	total	number	of	cycles	and	the	amount	of	stall	cycles	for	executing	the	loop	of	the	
program,	the	green-highlighted	portion.	Put	the	total	cycles	and	total	stall	cycles	of	all	the	3	configurations	in	Sheet	“1.3	Cycle	
Counting	and	Plot”	to	show	the	differences	pictorially	of	these	two	metrics	of	the	3	configurations.	Explain	the	table	using	a	short	
paragraph	(less	than	¼	pages).	Include	the	“Cycle	Counting	Plot”	figure	and	your	explanation	in	the	PDF	file	of	your	submission.		
	
Original	source	code:		
int sum(int N, int a, int *X) {
 int i;
 int result = 0;
 for (i = 0; i < N; ++i)
 result += X[i];
 return result;
}	
	
RISC-V	Assembly	code	compiled	into	64-bit	ISA	with	comments	added	manually:		
	
 .file "sum.c"
 .text
 .align 2
 .globl sum
 .type sum, @function
sum:
 add sp,sp,-48 /* update the stack pointer for this function */
 sd s0,40(sp) /* push the caller frame pointer to the stack */
 add s0,sp,48 /* update the frame pointer for this function */
 sw a0,-36(s0) /* store N in the current frame */
 sw a1,-40(s0) /* store a in the current frame */
 sd a2,-48(s0) /* store int * X in the current frame */
 sw zero,-24(s0) /* int result = 0 */
 sw zero,-20(s0) /* int i = 0 */
 j .L2 /* local jump to .L2 */
.L3:
 lw a5,-20(s0) /* a5 = i */
 sll a5,a5,2 /* a5 = i<<2, which is i=i*4 */
 ld a4,-48(s0) /* a4 = X */
 add a5,a4,a5 /* the &X[i] */
 lw a5,0(a5) /* the X[i] */
 lw a4,-24(s0) /* load result */
 addw a5,a4,a5 /* result += X[i] */

 sw a5,-24(s0) /* store to result */
 lw a5,-20(s0) /* i */
 addw a5,a5,1 /* i++ */
 sw a5,-20(s0) /* store i */
.L2:
 lw a4,-20(s0) /* i */
 lw a5,-36(s0) /* N */
 blt a4,a5,.L3 /* if (i < N) goto .L3 */
 lw a5,-24(s0) /* load result */
 mv a0,a5 /* the register for the return value */
 ld s0,40(sp) /* reset the frame pointer (fp) to the caller */
 add sp,sp,48 /* restore the stack pointer (sp) for the caller */
 jr ra /* jump back to the caller, ra: return address */
 .size sum, .-sum
 .ident "GCC: (GNU) 6.1.0"
	
The	following	table	shows	the	register	usage	for	function	call,	e.g.	ra	is	x1,	sp	is	x2,	and	fp	is	x8.	Please	refer	to	the	riscv.org	spec	
for	details	about	the	encoding	(https://riscv.org/specifications/,	Chapter	19).	For	encoding,	the	assembly	codes	use	instruction	
opcode	mnemonic	which	may	not	fully	tell	the	type	of	the	instruction.	E.g.	add	sp	sp	-48	is	actually	an	addi,	I-type	since	it	has	an	
immediate	in	the	instruction.	You	should	encode	it	as	addi	instruction	instead	of	a	R-type	add	instruction.		
	

	

	
	
	
Problem	2.	(Total	5	points)	
	

	
The	above	figure	shows	the	interlock	control	logic	for	handling	RAW	data	hazards	by	inserting	bubbles.	List	the	control	signals	
used	for	handling	RAW	hazards	between	two	instructions	in	ID-EXE,	ID-MEM	and	ID-WB	stages.	For	example,	for	two	instructions	
in	ID-EXE	stages,	we	will	need	rs1,	rs2,	re1,	re2,	we3	and	wa3	signals.		
	
	
	
	
	
	

IR#IR# IR#

PC# A#

B#
Y#

R#

MD1# MD2#

addr#
inst#

Inst#
Memory#

0x4#
Add#

IR# ALU#
rd1#

GPRs#

rs1#
rs2#

wa#
wd#rd2#

we#

wdata#

addr#

wdata#

rdata#
Data##
Memory#

we#

bubble#

stall#
Cstall#

wa1#

rs1#
rs2# ?#

we1#

re1# re2#
Cre#

wa3#
we2# wa2#

Cdest# Cdest#
we3#

Imm#
Select#

	
Problem	3.	(Total	5	points)	
	

	
The	above	figure	shows	the	data	path	for	handling	RAW	data	hazards	by	bypassing.	Label	the	data	path	used	for	handling	RAW	
hazards	between	two	instructions	in	EXE-EXE,	MEM-EXE	and	WB-EXE	stages	using	EXE-EXE,	MEM-EXE	and	WB-EXE	
	
	
	
	
	
	
	
	
	
	

ASrc%
IR%IR% IR%

PC% A%

B%
Y%

R%

MD1% MD2%

addr%
inst%

Inst%
Memory%

0x4%
Add%

IR% ALU%

Imm%
Select%

rd1%

GPRs%

rs1%
rs2%

wa%
wd%rd2%

we%

wdata%

addr%

wdata%

rdata%
Data%%
Memory%

we%

bubble%

stall%

D"

E" M" W"

PC%for%JAL,%...%

BSrc%

Problem	4.	(Total	30	points,	required	for	graduate	and	bonus	for	undergraduate)	
In	this	problem,	you	will	modify	a	RISC-V	32-bit	5-stage	pipeline	design	(UCB	Sodor	core)	to	experiment	the	impact	of	bypassing	
for	handling	data	hazards.	The	design	is	implemented	in	Chisel	and	your	modification	will	change	the	pipeline	data	and	control	
path	so	you	can	experiment	4	bypassing	configurations:	fully-interlocked	(no	bypassing),	EXE->EXE(forward	output	of	EXE	to	the	
input	of	EXE),	EXE|MEM->EXE	(forward	output	of	EXE	and	MEM	stage	to	the	input	of	EXE),	and	EXE|MEM|WB->EXE(full-
bypassing).		
	
The	latest	release	of	Sodor	core	(https://github.com/ucb-bar/riscv-sodor)	does	not	produce	a	summary	of	instruction	tracing	we	
need	when	being	simulated,	thus	we	will	use	an	older	version	of	the	Sodor	core	(https://github.com/passlab/riscv-sodor).	This	
https://github.com/ucb-bar/riscv-sodor/wiki	provides	a	high-level	overview	of	the	Sodor	core.		
	
Instructions	to	set	up	the	environment	on	a	CSCE	linux	machine	for	the	design,	simulation,	and	experiment.		
The	procedure	and	commands	were	performed	on	Linux	machines	in	Swearingen	1D43	and	3D22.	I	believe	it	works	on	other	
Linux	machines	as	well.		
	

1. Login	to	one	of	the	machine	using	ssh/putty.	Check	https://passlab.github.io/CSCE513/resources/devmachine.html	for	
details.		
	

2. Download	the	Sodor	source	folder	to	your	home	folder	using	the	following	command	(only	do	once)	
	
-bash-4.1$ cd ~
-bash-4.1$ wget https://passlab.github.io/CSCE513/Assignment_2/Assignment_2-riscv.tar
-bash-4.1$ tar xf Assignment_2-riscv.tar

	
Part	of	the riscv/riscv-sodor source	code	directory	structure	is	shown	as:		
n Makefile
n src/ /* Chisel source code for each RISC-V implementation */

o common /* common source codes shared between all processors */
o rv32_1stage /* source code for single-cycle RISC-V processor */
o rv32_2stage
o rv32_3stage
o rv32_5stage /* source code for single-cycle RISC-V processor */
o rv32_ucode

n emulator/ /* C++ emulator source code */
o common /* common emulation infrastructure for all processors */
o rv32_1stage /* C++ emulation code for single-cycle RISC-V processor */
o rv32_2stage
o rv32_3stage
o rv32_5stage /* C++ emulation code for 5-stage pipeline RISC-V processor */
o rv32_ucode

3. Configure	your	build	environment	for	the	source	code	(only	do	once)	

-bash-4.1$ cd riscv/riscv-sodor
-bash-4.1$./configure --with-riscv=$HOME/riscv/local
	

4. Build	and	run	the	simulator	(need	to	run	the	command	each	time	you	change	the	source	code	in	src/rv32_5stage)	
	

-bash-4.1$ cd emulator/rv32_5stage
-bash-4.1$ make run
	
If	this	is	your	first	time,	this	command	may	take	a	while.	Don’t	worry	about	unconnected	input/floating	output	warnings.	
The	command	make	run	does	the	following:	

• runs	sbt,	the	Scala	Built	Tool,	selects	the	rv32_5stage	project,	and	runs	the	Chisel	code	which	generates	a	C++	
cycle-accurate	description	of	the	processor.	The	generated	C++	code	can	be	found	in	
emulator/rv32_5stage/generated-src/	

• compiles	the	generated	C++	code	into	a	binary	called	emulator.	
• calls	the	RISC-V	front-end	server	(called	fesvr),	which	opens	a	socket	to	your	C++	binary	emulator,	and	sends	it	

a	RISC-V	binary	for	the	target	processor	to	execute.	All	of	the	RISC-V	tests	and	benchmarks	will	be	executed	when	
calling	“make	run”.	
	

A	PASSED	should	be	generated	by	each	of	the	6	programs,	see	below.		If	you	see	any	FAILED,	try	again	or	contact	me.	

 ……
 [PASSED] output/median.riscv.out
 [PASSED] output/multiply.riscv.out
 [PASSED] output/qsort.riscv.out
 [PASSED] output/towers.riscv.out
 [PASSED] output/vvadd.riscv.out
 [PASSED] output/dhrystone.riscv.out

-bash-4.1$

Inspect	the	simulation	output	of	the	6	programs:	median,	multiply,	qsort,	towers,	dhrystone,	and	vvadd.	
Using	your	editor	of	choice,	look	at	the	output	files	generated	from	make	run.	The	more	command	lists	the	contents	
from	the	beginning	and	you	can	hit	blank	key	to	roll	forward,	and	q	to	quit	the	browsing.	The	“tail –n 16”	
command	outputs	the	last	16	lines	of	the	file,	which	show	the	statistics	from	tracing.		

	

-bash-4.1$ more output/vvadd.riscv.out
-bash-4.1$ tail -n 16 output/vvadd.riscv.out

#----------- Tracer Data -----------

CPI : 1.27
IPC : 0.79
cycles: 3426

Bubbles : 20.957 %
Nop instr : 0.000 %
Arith instr : 37.916 %
Ld/St instr : 30.385 %
branch instr: 9.982 %
misc instr : 0.759 %
#-----------------------------------

*** PASSED ***
-bash-4.1$	

	
The	5-stage	processor	has	been	parameterized	to	support	both	full-bypassing	(but	must	still	stall	for	load-use	hazards)	and	fully-
interlocked.	The	fully-interlocked	variant	provides	no	bypassing,	and	instead	must	stall	(interlock)	the	IF	and	ID	stages	until	all	
hazards	have	been	resolved.	To	set	the	pipeline	to	“Fully-Bypassing”	or	“Fully-interlocked”,	navigate	to	the	Chisel	source	code:	
src/rv32_5stage/consts.scala	(https://github.com/passlab/riscv-sodor/blob/master/src/rv32_5stage/consts.scala).	
The	file	consts.scala	provides	constants	and	machine	parameters	for	the	processor.	Change	the	parameter	
USE_FULL_BYPASSING	to	true	or	false	to	enable	“Full-Bypassing”	or	“Fully-interlocked.		How	this	parameter	impacts	the	
pipeline	are	shown	in	the	data	path	in	dpath.scala	(https://github.com/passlab/riscv-
sodor/blob/master/src/rv32_5stage/dpath.scala#L203,	lines	~200-240)	and	the	control	path	in	cpath.scala	
(https://github.com/passlab/riscv-sodor/blob/master/src/rv32_5stage/cpath.scala#L222,	lines	~220-250).	The	data	path	has	
bypass	muxes	used	when	full	bypassing	is	activated.	The	control	path	contains	the	stall	logic,	which	must	be	accounted	for	
situations	when	no	bypassing	is	supported.	After	you	change	the	USE_FULL_BYPASSING	parameter,	follow	the	steps	starting	
from	#3	to	run	the	simulator	and	inspect/record	the	tracing	output	of	each	program.		
	
To	experiment	with	the	other	two	bypassing	configurations,	EXE->EXE	and	EXE|MEM->EXE,	you	will	need	to	modify	the	Chisel	
source	code	found	in	src/rv32_5stage.	The	dpath.scala	and	cpath.scala	files	contain	the	relevant	code	for	you	to	
modify	the	bypass	paths	and	stall	logic.	Make	sure	that	your	modified	pipeline	passes	the	assembly	tests!	After	modification,	
follow	the	steps	starting	from	#3	to	run	the	simulator	and	inspect/record	the	tracing	output	of	each	program.		

	

For	each	of	the	four	bypassing	configurations,	you	will	collect	CPI,	cycles	and	bubble	percentage	for	each	of	the	6	programs	and	
put	these	results	in	the	“Problem	4”	sheet	included	in	the	Excel	file.		For	each	of	the	three	metrics	(CPI,	cycles	and	bubble	
percentage),	a	plot	figure	is	already	created	so	after	you	input	the	results	in	the	sheet	table,	the	plot	figure	will	be	automatically	
populated.	(The	current	numbers	in	the	sheet	are	dummy	numbers.)	
In	the	submission	of	your	solution	for	this	problem,	please	include	the	following	in	the	PDF	file	of	your	submission:	

1. Code	snippet	for	the	changes	you	made	(not	the	whole	file)	and	the	filename.	
2. The	three	plot	figures.	
3. Based	on	the	results	and	figures,	provide	your	quantitative	explanation	for	the	impact	to	CPI,	total	cycles	and	

bubble	percentage	by	each	bypassing	configuration	and	data	path.	
	
	
Problem	5.1.	(Total	10	points)	
	

	
	
	

	
	
Problem	5.2.	(Total	20	points)	

	

	
Problem	5.3.	(Total	20	points)	

	
	
	
	

