
Introduction	to	High	Performance	
Computing	System,	Programming	and	

Applications

Department	of	Computer	Science	and	Engineering
Yonghong	Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

CSCE569	Parallel	Computing,	Spring	2018:	https://passlab.github.io/CSCE569/

1

Contents

• High	performance	computing	and	parallel	computing
– What	and	why

• Measuring	the	performance	of	computers	and	
supercomputers

• Parallel	system	architectures	and	programming
1. Shared	memory	system	(multi-core	and	multi-CPU	machine)
2. Peripheral	discrete	memory	system	(GPU	accelerator)
3. Distributed	memory	system	(computing	cluster)

• Summary

2

What	is	High	Performance	Computing

• Aggregating	computing	power	of	multiple	computing	
elements
– Parallel	processing	vs	sequential	processing

• Higher	performance	than	a	typical	desktop	computer	or	
workstation
– Supercomputer	vs	computing

• Solving	large	problems	in	science,	engineering,	or	business
– Computational	science	and	big-data	processing	vs	web	

browser,	office	software,	music	player,	etc

3

*What	is	HPC:	http://insidehpc.com/hpc-basic-training/what-is-hpc/

Parallel	Computing

• HPC	is	what	really	needed	*
– Parallel	computing	is	so	far	the	only	way	to	get	there!!

• Parallel	computing	makes	sense!

• Applications	that	require	HPC
– Many	problem	domains	are	naturally	parallelizable
– Data	cannot	fit	in	memory	of	one	machine

• Computer	systems
– Physics	limitation:	has	to	build	it	parallel
– Parallel	systems	are	widely	accessible	

• Smartphone	has	2	to	4	cores	+	GPU	now

4

Supercomputer:	http://en.wikipedia.org/wiki/Supercomputer
TOP500	(500	most	powerful	computer	systems	in	the	world):	http://en.wikipedia.org/wiki/TOP500,	http://top500.org/
HPC	matter:	http://sc14.supercomputing.org/media/social-media

An	Example:	Grading

5

15	questions
300	exams

From An Introduction to Parallel Programming, By Peter Pacheco, Morgan Kaufmann Publishers
Inc, Copyright © 2010, Elsevier Inc. All rights Reserved

Three Teaching Assistants

• To	grade	300	copies	of	exams,	each	has	15	questions
6

TA#1
TA#2 TA#3

Division	of	Work	– Data	Parallelism

• Each	does	the	same	type	of	work	(task),	but	working	on	
different	sheet	(data)

7

TA#1

TA#2

TA#3

100	exams

100	exams

100	exams

Division	of	Work	– Task	Parallelism

• Each	does	different	type	of	work	(task),	but	working	on	
same	sheets	(data)

8

TA#1

TA#2

TA#3

Questions	1	- 5

Questions	6	- 10

Questions	11	- 15

What	is	Parallel	Computing?

• A form	of	computation*:
– Large	problems	divided	into	smaller	ones
– Smaller	ones	are	carried	out	and	solved	
simultaneously

*http://en.wikipedia.org/wiki/Parallel_computing 9

Parallel	Computing

• Save	time	(execution	time)	and	money!
– Parallel	program	can	run	faster	if	running	concurrently	instead	of	

sequentially.

• Solve	larger	and	more	complex	problems!
– Utilize	more	computational	resources

From	“21st	Century	Grand	Challenges	|	The	White	House”,	http://www.whitehouse.gov/administration/eop/ostp/grand-challenges
Grand	challenges:	http://en.wikipedia.org/wiki/Grand_Challenges

10

Picture	from:	Intro	to	Parallel	Computing:	https://computing.llnl.gov/tutorials/parallel_comp

Simulation:	The	Third Pillar	of	Science	

• Traditional	scientific	and	engineering	paradigm:
1) Do	theory or	paper	design.
2) Perform	experiments or	build	system.

• Limitations	of	experiments:
– Too	difficult	-- build	large	wind	tunnels.
– Too	expensive	-- build	a	throw-away	passenger	jet.
– Too	slow	-- wait	for	climate	or	galactic	evolution.
– Too	dangerous	-- weapons,	drug	design,	climate	experimentation.

• Computational	science	paradigm:
3) Use	high	performance	computer	systems	to	simulate the	phenomenon

• Base	on	known	physical	laws	and	efficient	numerical	methods.

11

From	slides	of	Kathy	Yelic’s 2007	course	at	Berkeley:	http://www.cs.berkeley.edu/~yelick/cs267_sp07/	

Applications:	Science	and	Engineering	

• Model	many	difficult	problems	by	parallel	computing
– Atmosphere,	Earth,	Environment
– Physics	- applied,	nuclear,	particle,	condensed	matter,	high	

pressure,	fusion,	photonics
– Bioscience,	Biotechnology,	Genetics
– Chemistry,	Molecular	Sciences
– Geology,	Seismology
– Mechanical	Engineering	- from	prosthetics	to	spacecraft
– Electrical	Engineering,	Circuit	Design,	Microelectronics
– Computer	Science,	Mathematics
– Defense,	Weapons

12

Applications:	Industrial	and	Commercial

• Processing	large	amounts	of	data	in	sophisticated	ways
– Databases,	data	mining
– Oil	exploration
– Medical	imaging	and	diagnosis
– Pharmaceutical	design
– Financial	and	economic	modeling
– Management	of	national	and	multi-national	corporations
– Advanced	graphics	and	virtual	reality,	particularly	in	the	

entertainment	industry
– Networked	video	and	multi-media	technologies
– Collaborative	work	environments
– Web	search	engines,	web	based	business	services

13

Inherent	Parallelism	of	Applications

14

12	Dwarfs:	The	Landscape	of	Parallel	Computing	Research:	A	View	from	Berkeley
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Global	Climate	Modeling	Problem

• Problem	is	to	compute:
– f(latitude,	longitude,	elevation,	time)	à

temperature,	pressure,	humidity,	wind	velocity
• Approach:

– Discretize the	domain,	e.g.,	a	measurement	point	every	10	km
– Devise	an	algorithm	to	predict	weather	at	time	t+dt given	t

• Uses:
– Predict	major	events,	e.g.,	El	Nino
– Air	quality	forecasting

15

Units	of	Measure	in	HPC
• Flop:	floating	point	operation	(*,	/,	+,	-,	etc)
• Flop/s:	floating	point	operations	per	second,	written	also	as	FLOPS
• Bytes:	size	of	data

– A double	precision	floating	point	number	is	8	bytes
• Typical	sizes	are	millions,	billions,	trillions…

– Mega Mflop/s	=	106 flop/sec Mzbyte =	220 =	1048576	=	~106 bytes
– Giga Gflop/s	=	109 flop/sec Gbyte =	230 =	~109 bytes
– Tera Tflop/s	=	1012 flop/secTbyte =	240 =	~1012 bytes	
– Peta Pflop/s	=	1015 flop/sec Pbyte =	250 =	~1015 bytes
– Exa Eflop/s	=	1018 flop/secEbyte =	260 =	~1018 bytes
– Zetta Zflop/s	=	1021 flop/secZbyte =	270 =	~1021 bytes

• www.top500.org	for	the	units	of	the	fastest	machines	measured	using	
High	Performance	LINPACK	(HPL)	Benchmark	
– The	fastest:	Summit,	USA,	122.3	petaflop/s
– The	second	fastest:	Sunway	TaihuLight,	~93	petaflop/s,	the	fastest	till	June	

2018

16

HPC	Peak	Performance	(Rpeak)	Calculation

• Node	performance	in	Gflop/s	=	(CPU	speed	in	GHz)	x	
(number	of	CPU	cores)	x	(CPU	instruction	per	cycle)	x	
(number	of	CPUs	per	node).
– CPU	instructions	per	cycle	(IPC)	=	#Flops	per	cycle

• Because	pipelined	CPU	can	do	one	instruction	per	cycle
• 4	or	8	for	most	CPU	(Intel	or	AMD)

– http://www.calcverter.com/calculation/CPU-peak-
theoretical-performance.php

• HPC	Peak	(Rpeak)	=	#	nodes	*	Node	Performance	in	
GFlops

17

CPU	Peak	Performance	Example
• Intel	X5600	series	CPUs	and	AMD	6100/6200/6300	series	CPUs	have	4	

instructions	per	cycle
Intel	E5-2600	series	CPUs	have	8	instructions	per	cycle

• Example	1:	Dual-CPU	server	based	on	Intel	X5675	(3.06GHz	6-cores)	
CPUs:
– 3.06	x	6	x	4	x	2	=	144.88	GFLOPS

• Example	2:	Dual-CPU	server	based	on	Intel	E5-2670	(2.6GHz	8-cores)	
CPUs:
– 2.6	x	8	x	8	x	2	=	332.8	GFLOPS
– With	8	nodes:	332.8	GFLOPS	x	8	=	2,442.4	GFLOPS	=	2.44	TFLOPS

• Example	3:	Dual-CPU	server	based	on	AMD	6176	(2.3GHz	12-cores)	
CPUs:
– 2.3	x	12	x	4	x	2	=	220.8	GFLOPS

• Example	4:	Dual-CPU	server	based	on	AMD	6274	(2.2GHz	16-cores)	
CPUs:
– 2.2	x	16	x	4	x	2	=	281.6	GFLOPS

18
https://saiclearning.wordpress.com/2014/04/08/how-to-calculate-peak-theoretical-performance-of-a-cpu-based-hpc-system/

How	to	Measure	and	Calculate	Performance	
(FLOPS)

19

https://passlab.github.io/CSCE569/resources/sum.c

• Calculate	#	FLOPs	(2*N	or	3*N)
– Check	the	loop	count	(N)	and	FLOPs	per	

loop	iteration	(2	or	3).

• Measure	time	to	compute	using	timer
– elapsed	and	elapsed_2	are	in	second	

• FLOPS	=	#	FLOPs/Time
– MFLOPS	in	the	example

High	Performance	LINPACK	(HPL)	Benchmark	
Performance	(Rmax)	in	Top500

• Measured using	the	High	Performance	LINPACK	(HPL)	
Benchmark	that	solves	a	dense	system	of	linear	equations	
à Ranking	the	machines
– Ax	=	b
– https://www.top500.org/project/linpack

20

Top500	(www.top500.org),	June	2018

21

Three	Kinds	of	Parallel	Systems

• Parallel	computing	itself	is	not	hard:	A	form	of	computation:
– Large	problems	divided	into	smaller	ones
– Smaller	ones	are	carried	out	and	solved	simultaneously

• The	most	difficult	issue	of	using	HPC	system,	via	parallel	
programming	is	to	deal	with	memory	and	data	movement
– Actually,	most	computing	related	problem

• Think	of	three	kinds	of	memory	systemsà three	kinds	of	
parallel	systems
1. Shared	memory	system	(multi-core,	multi-CPU	machine)
2. Peripheral	discrete	memory	system	(GPU	and	accelerators)
3. Distributed	memory	system	(computing	cluster)

4. The	combination	of	the	above	three

22

Shared	Memory	Systems

• a

23

Motherboard	of	NUMA	Architecture

24

Parallel	Programming	via	Threading

• Parallel	programming	could	be	very	simple
– Performance	could	be	very	hard	because	of	the	memory	system

• Multithreading	and	tasking
– POSIX	threads	and	multi-processing	in	system	level

• pthread library	and	fork	()	system	call
– OpenMP
– Cilkplus and	lots	of	others

25

OpenMP “Hello	Word”	Example/1

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

printf("Hello World\n");

return(0);
}

26

OpenMP “Hello	Word”	- An	Example/2

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

printf("Hello World\n");

} // End of parallel region

return(0);
}

27

OpenMP “Hello	Word”	- An	Example/3

$ gcc –fopenmp hello.c

$ export OMP_NUM_THREADS=2
$./a.out
Hello World
Hello World

$ export OMP_NUM_THREADS=4
$./a.out
Hello World
Hello World
Hello World
Hello World
$

28

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

printf("Hello World\n");

} // End of parallel region

return(0);
}

OpenMP “Hello	Word”	- An	Example/4

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

int thread_id = omp_get_thread_num();
int num_threads = omp_get_num_threads();

printf("Hello World from thread %d of %d\n",
thread_id, num_threads);

}

return(0);
}

29

Directives

Runtime	Environment

OpenMPWorksharing Constructs

30

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

Discrete	Memory	System	and	Graphics	
Processing	Unit	(GPU)

31

GPU	Manycore Accelerators:	From	~2007

• NVIDIA	Tesla	V100,	Released	May	2017
– Total	80	SM	Processors

• Cores
– 5120	FP32	cores,	2560	FP64	cores,	640	Tensor	cores

• Memory
– 16G	HBM2

32

GPU	Computing	– Offloading	Computation

• The	GPU	is	connected	to	the	CPU	by	a	reasonable	fast	bus	
(8	GB/s	is	typical	today):	PCIe

• Terminology
– Host:	The	CPU	and	its	memory	(host	memory)
– Device:	The	GPU	and	its	memory	(device	memory)

33

Offloading	Workflow	for	GPU	Programming

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

PCI	Bus

34

Offloading	Workflow	for	GPU	Programming

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

PCI	Bus

35

Offloading	Workflow	for	GPU	Programming

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

3. Copy	results	from	GPU	memory	to	
CPU	memory

PCI	Bus

36

AXPY	Example	with	OpenMP:	Multicore

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• Data	(x,	y	and	a)	are	shared
– Parallelization	is	easy

37

AXPY	Offloading	To	a	GPU	using	CUDA

38

Memory	allocation	on	device

Memcpy from	host	to	device

Launch	parallel	execution

Memcpy from	device	to	host

Deallocation of	dev memory

AXPY	Example	with	OpenMP:	single	device

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• target directive:	annotate	an	offloading	code	region
• map clause:	map	data	between	host	and	device	àmoving	data

– to|tofrom|from:	mapping	directions
– Use	array	region

39

What	kinds	of	computation	fit	for	
Graphics	Processing	Unit	(GPU)?

40

Image	Format	and	Processing

• Pixels
– Images	are	matrix	of	pixels

• Grayscale images
– Each	pixel	value	normally	range	from	0	(black)	to	255	(white)
– 8	bits	per	pixel

41

Histograms	of	Monochrome	Image

• Same	operation	
for	every	pixel

42http://homepages.inf.ed.ac.uk/rbf/BOOKS/PHILLIPS/cips2edsrc/HIST.C

Image	Filtering	

• Changing	pixel	values	by	doing	a convolution between	a	
kernel	(filter)	and	an image.

43

Computation	that	Fit	for	GPUs

• GPU	vs	CPU	ßà think	of	ants	vs	bulls
– GPU	cores	are	much	simpler	than	CPU	cores

• A	single	GPU	core	is	much	slower	than	a	CPU	core
– GPU	has	much	more	number	of	cores	than	CPU

• GPU	could	be	much	faster	than	a	CPU

• Same	or	similar	operations	on	large	number	of	elements
– 1-D,	2-D,	3-D	matrices	etc

• No	data	dependency	between	processing	those	elements

44

Distributed	Memory	Systems

45

Computing	Clusters

46

Distributed	Memory	System	and	Message	
Passing

47

• Memories	are	distributed
• Data	have	to	be	explicitly	moved

• The	standard	for	programming	distributed	memory	system	for	
HPC
– Single	Program	Multiple	Data	(SPMD)
– MPI	(Message	Passing	Interface)

• Enterprise	and	big-data:
– Hadoop,	Spark,	etc

SPMD	and	MPI

• SPMD:	Single	Program	Multiple	Data
• MPI:	Message	Passing	Interface

48

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]){
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

mpicc mpihello.c
mpd&
mpirun –np 4 ./a.out

I am 0 of 4
I am 2 of 4
I am 1 of 4
I am 3 of 4

A	Simple	MPI	Program
#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, buf;
MPI_Status status;
MPI_Init(&argv, &argc);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Process 0 sends and Process 1 receives */
if (rank == 0) {
buf = 123456;
MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (rank == 1) {
MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

&status);
printf(“Received %d\n”, buf);

}

MPI_Finalize();
return 0;

}

SPMD Model

49

Using	Two	or	Three	Memory	Systems	the	Same	
Time:	The	Reality	

• The	real	systems	are	much	more	complicated
– It	is	often	that	user	need	to	use	MPI/OpenMP/CUDA	the	same	

time

50

Most	Computational	Simulation	Applications

51

Using	Domain-Specific	Framework	and	Batch	
Processing

• Data	processing	for	simple	embarrassing	parallelism
– MapReduce:	Hadoop	and	Spark

• Python/R:	job	or	process	based	parallel	processing
– A	completely	new	process	will	be	created	

• Docker	and	virtual	machine
– Isolated	containers	or	VM	to	achieve	parallel	batch	processing

• Resource	management	is	the	key	for	Python/R	and	
docker/VM	approach

52

Summary

• Understand	the	fundamental	HPC	helps	you	choose	the	
right	software	and	hardware	for	your	applications

• For	writing	your	own	code
– Parallelism	is	the	starting	point
– Memory	is	the	key	for	both	correctness	and	performance

• Could	become	very	ugly

• It	is	just	not	an	easy	problem
– It	has	never	been	and	it	seems	not	going	to	be

53

