Introduction to High Performance
Computing System, Programming and
Applications

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

CSCE569 Parallel Computing, Spring 2018: https://passlab.github.io/CSCE569/

Contents

* High performance computing and parallel computing
— What and why

* Measuring the performance of computers and
supercomputers

* Parallel system architectures and programming
1. Shared memory system (multi-core and multi-CPU machine)
2. Peripheral discrete memory system (GPU accelerator)
3. Distributed memory system (computing cluster)

* Summary

What is High Performance Computing

* Aggregating computing power of multiple computing
elements
— Parallel processing vs sequential processing

* Higher performance than a typical desktop computer or
workstation
— Supercomputer vs computing

* Solving large problems in science, engineering, or business

— Computational science and big-data processing vs web
browser, office software, music player, etc

*What is HPC: http://insidehpc.com/hpc-basic-training/what-is-hpc/

Parallel Computing

* HPCis what really needed *
— Parallel computing is so far the only way to get there!!

* Parallel computing makes sense!

* Applications that require HPC
— Many problem domains are naturally parallelizable
— Data cannot fit in memory of one machine

* Computer systems
— Physics limitation: has to build it parallel
— Parallel systems are widely accessible
* Smartphone has 2 to 4 cores + GPU now

Quad Core

Supercomputer: http://en.wikipedia.org/wiki/Supercomputer
TOP500 (500 most powerful computer systems in the world): http://en.wikipedia.org/wiki/TOP500, http://top500.0org/
HPC matter: http://sc14.supercomputing.org/media/social-media

4

An Example: Grading

15 questions
300 exams

From An Introduction to Parallel Programming, By Peter Pacheco, Morgan Kaufmann Publishers
Inc, Copyright © 2010, Elsevier Inc. All rights Reserved

Three Teaching Assistants

&«

—

* To grade 300 copies of exams, each has 15 questions

Division of Work — Data Parallelism

* Each does the same type of work (task), but working on
different sheet (data)

TAH1

TAH#H3
100 exams

100 exams

TAH#H2
100 exams

Division of Work — Task Parallelism

* Each does different type of work (task), but working on
same sheets (data)

TAH#1 — E
— — p— —
(:: — o TA#3
— — _ e
om
— Questions 11 - 15

e TAH2

Questions 6 - 10

What is Parallel Computing?

* A form of computation*™:
— Large problems divided into smaller ones

— Smaller ones are carried out and solved
simultaneously

*http://en.wikipedia.org/wiki/Parallel_computing

Parallel Computing

* Save time (execution time) and money!

— Parallel program can run faster if running concurrently instead of
sequentially.

\ \

Noal o/ Laal Lol 1o

\/

B,
4 4 4 4 ' 4

i i e el —

Picture from: Intro to Parallel Computing: https://computing.linl.gov/tutorials/parallel_comp

* Solve larger and more complex problems!
— Utilize more computational resources

Current Grand Challenges

?

DI e M VEX . S .

L b \ 4 i A

NIH, DARPA, and NSF’s BRAIN DOE’s SunShot Grand Challenge, to NASA'’s Asteroid Grand Challenge, to USAID’s Grand Challenges for
Initiative, to revolutionize our make solar energy cost competitive with find all asteroid threats to human Development, including Saving Lives at
understanding of the human mind and coal by the end of the decade, and EV populations and know what to do about Birth that catalyzes groundbreaking

From “21st Century Grand Challenges | The White House”, http://www.whitehouse.gov/administration/eop/ostp/grand-challenges
Grand challenges: http://en.wikipedia.org/wiki/Grand_Challenges

10

Simulation: The Third Pillar of Science

* Traditional scientific and engineering paradigm:
1) Do theory or paper design.
2) Perform experiments or build system.

* Limitations of experiments:
— Too difficult -- build large wind tunnels.
— Too expensive -- build a throw-away passenger jet.
— Too slow -- wait for climate or galactic evolution.

— Too dangerous -- weapons, drug design, climate experimentation.

* Computational science paradigm:

3) Use high performance computer systems to simulate the phenomenon
* Base on known physical laws and efficient numerical methods.

From slides of Kathy Yelic’s 2007 course at Berkeley: http://www.cs.berkeley.edu/~yelick/cs267 sp07/
11

Applications: Science and Engineering

* Model many difficult problems by parallel computing

Atmosphere, Earth, Environment

Physics - applied, nuclear, particle, condensed matter, high
pressure, fusion, photonics

Bioscience, Biotechnology, Genetics

Chemistry, Molecular Sciences

Geology, Seismology

Mechanical Engineering - from prosthetics to spacecraft
Electrical Engineering, Circuit Design, Microelectronics
Computer Science, Mathematics

Defense, Weapons

Applications: Industrial and Commercial

* Processing large amounts of data in sophisticated ways
— Databases, data mining
— Oil exploration
— Medical imaging and diagnosis
— Pharmaceutical design %
— Financial and economic -
— Management of national and multi-national corporations

— Advanced graphics and virtual reality, particularly in the
entertainment industry

— Networked video and multi-media technologies
— Collaborative work environments
— Web search engines, web based business services

13

Inherent Parallelism of Applications

Many Classes of Applications are Massively Parallel

Chemical
Dynamics ¥ —— ‘Suortnt'c *
catterings
Condensed Matter "~ Electronic \ Fourier / / /
Electronic Structure = Structure \ i Methods
N-Body

Neural Networks

/

Biosphere/Geosphere

i
o o

Physics

CVvD
Actinide Quantum Transport
- fp——
Chemistry Chemistry
Cosmology

Astrophysncs

! > 4
Manufacturin d—/ Dtscrete Basic Rty > gm;:l
itary M Algorithms & ERHE . e — e —
Lo / m et e Dif £

Logistics Methods Diff. EQs.
/ IEEiEiiii! Symbolic Geophysical Fluids
lhtcl'lng Processmg Ecosystems
Eoonom-cs
Quantum / Models
Chromo

Dmns / Reaity ¥ lnte N - Astrophysics
Virtual Muitimedia
Prototypes ?&!r‘b“m Databases
s
Scientific

Computational Visualization CAD Number Theory
Steering

12 Dwarfs: The Landscape of Parallel Computing Research: A View from Berkeley
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Global Climate Modeling Problem

°* Problem is to compute:
— f(latitude, longitude, elevation, time) 2
temperature, pressure, humidity, wind velocity

* Approach:
— Discretize the domain, e.g., a measurement point every 10 km
— Devise an algorithm to predict weather at time t+dt given t

* Uses:
— Predict major events, e.g., El Nino
— Air quality forecasting

i

I A I

|
IR

L5

Units of Measure in HPC

* Flop: floating point operation (*, /, +, -, etc)
* Flop/s: floating point operations per second, written also as FLOPS

* Bytes: size of data
— A double precision floating point number is 8 bytes

* Typical sizes are millions, billions, trillions...
— Mega Mflop/s = 10° flop/sec Mzbyte = 220 = 1048576 = ~10° bytes
— Giga Gflop/s = 10° flop/sec Gbyte = 230 = ~10° bytes
— Tera Tflop/s = 102 flop/secTbyte = 24° = ~101? bytes
— Peta Pflop/s =10 flop/sec Pbyte = 2°° = ~10%° bytes
— Exa Eflop/s = 1018 flop/secEbyte = 20 = ~1018 bytes
— Zetta Zflop/s = 10%! flop/secZbyte = 270 = ~10%! bytes

* www.top500.org for the units of the fastest machines measured using
High Performance LINPACK (HPL) Benchmark
— The fastest: Summit, USA, 122.3 petaflop/s

— The second fastest: Sunway TaihulLight, ~93 petaflop/s, the fastest till June
2018

16

HPC Peak Performance (Rpeak) Calculation

* Node performance in Gflop/s = (CPU speed in GHz) x
(number of CPU cores) x (CPU instruction per cycle) x
(number of CPUs per node).

— CPU instructions per cycle (IPC) = #Flops per cycle
* Because pipelined CPU can do one instruction per cycle
* 4 or 8 for most CPU (Intel or AMD)

— http://www.calcverter.com/calculation/CPU-peak-
theoretical-performance.php

* HPC Peak (Rpeak) = # nodes * Node Performance in
GFlops

17

CPU Peak Performance Example

* |ntel X5600 series CPUs and AMD 6100/6200/6300 series CPUs have 4
instructions per cycle
Intel E5-2600 series CPUs have 8 instructions per cycle

* Example 1: Dual-CPU server based on Intel X5675 (3.06GHz 6-cores)
CPUs:

— 3.06x6x4x2=144.88 GFLOPS

* Example 2: Dual-CPU server based on Intel E5-2670 (2.6GHz 8-cores)
CPUs:
— 2.6 x8x8x2=332.8GFLOPS
— With 8 nodes: 332.8 GFLOPS x 8 = 2,442.4 GFLOPS = 2.44 TFLOPS

* Example 3: Dual-CPU server based on AMD 6176 (2.3GHz 12-cores)
CPUs:
— 2.3x12x4x2=220.8 GFLOPS

* Example 4: Dual-CPU server based on AMD 6274 (2.2GHz 16-cores)
CPUs:
— 2.2x16x4x2=281.6 GFLOPS

https://saiclearning.wordpress.com/2014/04/08/how-to-calculate-peak-theoretical-performance-of-a-cpu-based-hpc-system/ 18

}

REAL sum(int N, REAL X[], REAL a) {

}
/*

* sum: a*X[]+Y[]
*/
REAL sumaxpy(int N, REAL X[], REAL Y[], REAL a) {

How to Measure and Calculate Performance
(FLOPS)

élapsedk= read_timer();
REAL result = sum(N, X, a);

1 d = d ti - el d); : :
R https://passlab.github.io/CSCE569/resources/sum.c
double elapsed 2 = read timer();
result = sumaxpy(N, X, Y, a);
elapsed 2 = (read_timer() - elapsed_2);

/* you should add the call to each function and time the execution */

printf (" =s=== ============
printf("\tSum %d numbers\n", N);

printf(=== ———————————————————————————————
printf ("Performance:\t\tRuntime (ms)\t MFLOPS \n");

printf("-—-——=—=———
printf("Sum:\t\t\t%4£f\t%4f\n", elapsed * 1.0e3, 2*N / (1.0e6 * elapsed));

printf ("SumAXPY:\t\t\t%4£f\t%4£f\n", elapsed 2 * 1.0e3, 3*N / (1l.0e6 * elapsed 2));
return 0;

* (Calculate # FLOPs (2*N or 3*N)

int i; — Check the loop count (N) and FLOPs per
REAL result = 0.0; loop iteration (2 or 3).

for (i = 0; i < N; ++i)
result += a * X[i];

return result; * Measure time to compute using timer
— elapsed and elapsed_2 are in second

* FLOPS = # FLOPs/Time
int i; — MFLOPS in the example

REAL result = 0.0;
for (i = 0; i < N; ++i)

result += a * X[i] + Y[i]; 19
return result;

High Performance LINPACK (HPL) Benchmark
Performance (Rmax) in Top500

* Measured using the High Performance LINPACK (HPL)
Benchmark that solves a dense system of linear equations
= Ranking the machines

— Ax=b
— https://www.top500.org/project/linpack

peak Power

Rank System Cores TFlop/s) §TFlop/s) (kW)

1 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA 2,282,544
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/SC/0Oak Ridge National Laboratory
United States

22,300.0 J187,659.3 8,806

2 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, 10,649,600
Sunway , NRCPC
National Supercomputing Center in Wuxi

China

93,014.6 125,435.9 15,371

3 Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA 1,572,480
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/NNSA/LLNL
United States

71,610.0 §119,193.6

4 Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH 4,981,760 | 61,444.5 §100,678.7 18,459

Express-2, Matrix-2000 , NUDT

Top500 (www.top500.0rg), June 2018 500

Rank System

1

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM

DOE/SC/0Oak Ridge National Laboratory

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,
Sunway , NRCPC

National Supercomputing Center in Wuxi

China

Sierra - IBM Power System S922LC, IBM POWERY 22C 3.1GHz, NVIDIA
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/NNSA/LLNL

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH
Express-2, Matrix-2000 , NUDT

National Super Computer Center in Guangzhou

China

Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, Xeon

Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu
National Institute of Advanced Industrial Science and Technology (AIST)

Japan

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,
NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS]

Cores

2,282,544

10,649,600

1,572,480

4,981,760

391,680

361,760

Rmax
(TFlop/s)

122,300.0

93,014.6 125,435.

71,610.0 119,193.

61,444.5 100,678.

19,880.0 32,576.

19,590.0 25,326.

The List.

15,371

18,482

1,649

2,272
21

Three Kinds of Parallel Systems

* Parallel computing itself is not hard: A form of computation:

— Large problems divided into smaller ones
— Smaller ones are carried out and solved simultaneously

* The most difficult issue of using HPC system, via parallel
programming is to deal with memory and data movement

— Actually, most computing related problem

* Think of three kinds of memory systems - three kinds of

parallel systems
1. Shared memory system (multi-core, multi-CPU machine)

2. Peripheral discrete memory system (GPU and accelerators)
3. Distributed memory system (computing cluster)

4. The combination of the above three

22

Shared Memory Systems

Multi-core Processor

CPU CPU | |Memory
3 4

Individual Individual
Memory Memory Memory Memory

| |] |

Shared Memory
\ Bus Interface)

l Chip Boundary

CPU CPU CPU

Router

CPU CPU Memory

System bus

NUMA Architecture

SMP: Multiple processors share RAM and
system bus 23

Motherboard of NUMA Architecture

24

Parallel Programming via Threading

Multi-core Processor

CPU CPU CPU

CPU

CPU

Memory

Router

system bus CPU

Chip Boundary

CPU

| i |
\ Euslgterice / SMP: Multiple processors share RAM and

Memory

* Parallel programming could be very simple

NUMA Architecture

— Performance could be very hard because of the memory system

* Multithreading and tasking

— POSIX threads and multi-processing in system level
* pthread library and fork () system call

— OpenMP

— Cilkplus and lots of others

25

OpenMP “Hello Word” Example/1

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv|[]) ({

printf ("Hello World\n") ;

return (0) ;

}

26

OpenMP “Hello Word” - An Example/2

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv|[]) {

#pragma omp parallel

{
printf ("Hello World\n") ;

} // End of parallel region

return (0) ;

27

OpenMP “Hello Word” - An Example/3

S ./a.

S ./a.
Hello
Hello
Hello
Hello

$

$ gcc —-fopenmp hello.c

$ export OMP NUM THREADS=2

out

Hello World
Hello World

$ export OMP NUM THREADS=4

out

World
World
World
World

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv|[]) {
#fpragma omp parallel
{ printf ("Hello World\n");
} // End of parallel region

return (0) ;

}

OpenMP “Hello Word” - An Example/4

#include <stdlib.h>
#include <stdio.h>

#include

int main (int Qggc, char *argv[]) {

J#pragma omp paral lel>< —————————————————— Directives
* \

\
int thread id Z-Omp get thread num() ;
int num threads'= omp get num threads()
\
printf ("Hello World from thf¥ead %d of %d\n",

thread_id, num threads);
} \ !

\ \
\ \
return (0) ; A !

} Runtime Environment

N
O

OpenMP Worksharing Constructs

Sequential code

OpenMP parallel
region and a
worksharing for
construct

OpenMP parallel
region

for(i=0;i<N;i++) {al[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)
for(i=0;i<N;i++) {a[i] = a[i] + bl[i]; }

#pragma omp parallel shared (a, b)

{

Int id, I, Nthrds, istart, iend;

id = omp_get thread num();

Nthrds = omp_get num_threads();

istart =id * N / Nthrds;

iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + bl[i]; }

Inputs

Discrete Memory System and Graphics
Processing Unit (GPU)

Graphics Subsystem

Display
CPU GPU g'
. (Central Processing . (Graphics Processing
Unit) Unit)
Main Memory
External

Memory

31

GPU Manycore Accelerators: From ~2007

NVIDIA

* NVIDIA Tesla V100, Released May 2017
— Total 80 SM Processors

* Cores
— 5120 FP32 cores, 2560 FP64 cores, 640 Tensor cores

* Memory
— 16G HBM?2

32

GPU Computing — Offloading Computation

°* The GPU is connected to the CPU by a reasonable fast bus
(8 GB/s is typical today): PCle

graphics bus

(AGP or PCI Northbridge

Express)

(memory

Southbridge

(/O controller
hub)

IDE

SATA

USB

Ethernet

Audio Codec
CMOS Memory

PCI Slots

 Terminology
— Host: The CPU and its memory (host memory)

— Device: The GPU and its memory (device memory)
33

Offloading Workflow for GPU Programming

PCl Bus >

CPU Memory

IRIRNRNNREREN

1. Copy input data from CPU memory to
GPU memory

34

Offloading Workflow for GPU Programming

PCI Bus >

CPU Memory

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

35

Offloading Workflow for GPU Programming

PCI Bus >

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

/
AL

4

IRIRNRNNREREN

IRNNRNRNNREREN

L2

DRAM

36

AXPY Example with OpenMP: Multicore

| 1§l g1 |
*y=axty © 9/0 9/ of -
— x and vy are vectors of size n

— ais scalar iillll

1 void axpy(REAL *xx, REAL xy, long n, REAL a) {
2 #pragma omp parallel for shared(x, y, n, a)
3 for (1nt 1 = 0; 1 < n; ++1)

4 y[i] += a x x[1i];

5 }

°* Data (x, y and a) are shared
— Parallelization is easy

37

AXPY Offloading To a GPU using CUDA

// CUDA kernel. E
__global__ void axpy(REAL *x, REAL xy, int n, REAL a) {
int id = blockIdx.xxblockDim.x+threadIdx.x;

if (id < n) yl[id] += a *x x[id];

ach thread takes care of one element of c

int main(int argc, charx argv[]) {

CONOUTA WN R
v

// ... init host a, x and y

| | l | |
©000060

RERRR N

Memory allocation on device

10 // Allocate memory for each vector on GPU

11 cudaMalloc(&d_x, size);

12 cudaMalloc(&d_y, size);

13

14 // Copy host vectors to device

15 cudaMemcpy(d_x, h_x, size, cudaMemcpyHostToDevice);
16 cudaMemcpy(d_y, h_y, size, cudaMemcpyHostToDevice);
17

18 int blockSize, gridSize;

19 blockSize = ;

20 gridSize = (int)ceil((float)n/blockSize);

21 axpy<<<gridSize, blockSize>>>(d_x, d_y, n, a);

22

23 // Copy array back to host

24 cudaMemcpy(h_y, d_y, size, cudaMemcpyDeviceToHost)}
25

26 // Release device memory

27 cudaFree(d_x);

28 cudaFree(d_y);

Memcpy from host to device

Launch parallel execution

Memcpy from device to host

Deallocation of dev memory
38

AXPY Example with OpenMP: single device

[1 1
Tysaxty 206960
— x and y are vectors of size n RN
— o is scalar
1 void axpy_ompacc(REALx x, REALx y, int n, REAL a) {
2 | #pragma omp target device (@) map(tofrom: y[@:n]) \
3 map(to: x[@:n],a,n)
4 #pragma omp parallel for shared(x, y, n, a)
5 for (int i = 0; 1 < n; ++1i)
6 y[i]l += a *x x[i];
7}

* target directive: annotate an offloading code region

°* map clause: map data between host and device 2 moving data
— to|tofrom|from: mapping directions

— Use array region
39

What kinds of computation fit for
Graphics Processing Unit (GPU)?

Image Format and Processing

* Pixels
— Images are matrix of pixels

v 4/ pixel

X

®* Grayscale images

— Each pixel value normally range from 0 (black) to 255 (whlte)
— 8 bits per pixel 43

But the camera sees this:
194 210 201 212 199 213 215 195 178 158 182 209
180 189 190 221 209 205 191 167 147 115 129 163

114 126 140 188 176 165 152 140 170 106 78 88
87 103 115 154 143 142 149 153 173 00 57 57
IOZ H2 106 131 122 138 152 147 128 &4 8 &

79 104 105 124 129 113 107 & & 67
68 7! 6 98 89 92 98 95 B 8 76 &
41 56 68 99 63 45 &0 82 S8 76 74 65
20 4 6 75 S6 41 51 73 S5 70 63 M
N N W S0 I N 8 NN
72 59 53 66 84 92 B4 74 ST 2 63 &
67 6! 58 65 75 78 16 73 9 5 & N

41

A —

Histograms of Monochrome Image

®* Same operation
for every pixel

(a)

calculate histogram(image, histogram, length,

int length, width;
short **image;
unsigned long histogram][];

long 1i,3J;
——ROrt ke

72}
)
o
S 6
S 4 -
= 2
z | |
0 65 155 255 Gray levels

width) ©)

L
50 100 150 200 255

for(i=0; i<length; i++){
for(j=0; j<width; j++){

k = 1mage[1][]];
histogram[k] = histogram[k] + 1;

}

Gray Levels
(a) ®

Figure 5. Histogram of a dark image. Image by Sneha H.L.

}

} /* ends calculate histogram */

N}

Py 7

, mull. 3 Y

50 100 150 200 255 l \ l
Gray Levels

(a) (b)

Figure 6. Histogram of a bright image. Image by Sneha H.L.

http://homepages.inf.ed.ac.uk/rbf/BOOKS/PHILLIPS/cips2edsrc/HIST.C

42

Image Filtering

* Changing pixel values by doing a convolution between a
kernel (filter) and an image.

Source pixel

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Convolution kernel
(emboss)

New pixel value (destination pixel)

(4x0)
(0x0)
(0x0)
(0x0)
(0x1)
(0x 1)
(0x0)
(0x1)

+ (-4 x2)

for(i=
if((i%10) ==

1; i<rows-1; i++){
0) printf("%d ", 1i);

for(j=1; q<cols-1; ++){

sum = 0;
for(a=-1; a<2; a++){
for(b=-1; b<2; b++){
sum = sum +
the image[i+a][]tb]
filter[a+l][b+1];

}

sum = sum/d;
if(sum < 0) sum = 0;
if(sum > max) sum = max;
out image[i][]] = sum;

*

/* ends loop over j */
ends loop over i */

43

Computation that Fit for GPUs

* GPU vs CPU €= think of ants vs bulls
— GPU cores are much simpler than CPU cores
* Asingle GPU core is much slower than a CPU core
— GPU has much more number of cores than CPU
* GPU could be much faster than a CPU

°* Same or similar operations on large number of elements
— 1-D, 2-D, 3-D matrices etc

°* No data dependency between processing those elements

44

Distributed Memory Systems

| CPU CPU CPU
e | Pl f
] Memory Memory Memory
Network switch

High Speed Network / Switch

| I |
€. D

’ ARCHITECTURES
Master node " 19

‘ 80% Constellations

Clusters
60% MPP

40%

SMP

20%

Compute nodes

Single
Proc.

Users

93 94 95 % 97 ‘98 99 00 01 02 03 04 05 06 07 08 09 0 11 12 13
4>

Computing Clusters

Distributed Memory System and Message

Passing
CPU CPU
' }
Memory Memory

|

|

CPU

v

Memory

High Speed Network / Switch

Memories are distributed

Data have to be explicitly moved

I
D

The standard for programming distributed memory system for

HPC

— Single Program Multiple Data (SPMD)

— MPI (Message Passing Interface)

Enterprise and big-data:
— Hadoop, Spark, etc

47

SPMD and MPI

* SPMD: Single Program Multiple Data

* MPI: Message Passing Interface
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int rank, size;
MPI Init(&argc, &argv);
MPI Comm rank(MPI_COMM WORLD, &rank) ;
MPI Comm size(MPI COMM WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI Finalize () ;

return O; I am 0 of 4
} I am 2 of 4
mpicc mpihello.c I am 1 of 4
mpd& I am 3 of 4
mpirun -np 4 ./a.out

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv][])

{

}

int rank, buf; SPMD Model

MPI Status status;
MPI Init(&argv, &argc);
MPI Comm rank(MPI COMM WORLD, &rank);

/* Process 0 sends and Proces
if (rank == 0) €t
buf = 123456;

MPI Send(&buf, 1, MPI INT, 1
} else if (rank == 1)
MPI Recv(&buf, 1, MPI INT, O, 0, MPI COMM WORLD,

&status) ;
printf(“Received %d\n”, buf);
}

ceives */

MPI COMM WORLD) ;

MPI Finalize();
return 0;
49

Using Two or Three Memory Systems the Same
Time: The Reality

®* The real systems are much more complicated

— It is often that user need to use MPI/OpenMP/CUDA the same
time

IBM’s supercomputer node

50

Most Computational Simulation Applications

i

11
RRSA

=

{41

1 MPI_Init(argc, argv); //MPI SPMD parallel

2 //domain decomposition

3 /xkxxk the main simulation loop xkxx/

4 #pragma omp parallel ... //0OpenMP threading

6

7 tzragma omp for ... //0penMP worksharifgg
8 - ('\'/'/ 1

9 communication such as boundary exchange
10

11

12

13 //optional I/0 or instrumentation for
14 //in-situ processing
15 }

B): MPI/OpenMP Skeleton Code of Parallel Iterative Methods
for Computational Simulation

51

Using Domain-Specific Framework and Batch
Processing

Data processing for simple embarrassing parallelism
— MapReduce: Hadoop and Spark

Python/R: job or process based parallel processing
— A completely new process will be created

Docker and virtual machine

— Isolated containers or VM to achieve parallel batch processing

Resource management is the key for Python/R and
docker/VM approach

52

Summary

* Understand the fundamental HPC helps you choose the
right software and hardware for your applications

* For writing your own code
— Parallelism is the starting point
— Memory is the key for both correctness and performance
* Could become very ugly

® |tisjust not an easy problem
— It has never been and it seems not going to be

53

